[image:]

08_Machine_Learning/DB_Model_Serving_Patterns.docx

Databricks Model Serving Patterns Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	ML Platform Team

1. Executive Summary
This guide provides comprehensive patterns for deploying and serving machine learning models on Databricks. It covers real-time model serving, batch inference, streaming inference, and advanced deployment patterns like A/B testing and canary deployments. The guide enables ML engineers to deploy models safely and efficiently at scale.
Model Serving Options Overview
Databricks provides multiple options for serving ML models, each suited for different use cases:
	Serving Type
	Latency
	Throughput
	Use Case

	Model Serving (REST)
	Low (ms)
	Medium
	Real-time predictions, APIs

	Batch Inference
	High (min)
	Very High
	Scheduled scoring, bulk predictions

	Streaming Inference
	Medium (sec)
	High
	Continuous scoring, event-driven

	Feature Serving
	Very Low (ms)
	Medium
	Real-time feature lookup

2. Model Serving Architecture
2.1 End-to-End Serving Architecture
┌───┐
│ MODEL SERVING ARCHITECTURE │
├───┤
│ │
│ ┌───┐ │
│ │ MODEL REGISTRY │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────────────┐ │ │
│ │ │ MLflow │ │ Unity │ │ Model Versions │ │ │
│ │ │ Models │ │ Catalog │ │ & Aliases │ │ │
│ │ │ │ │ Governance│ │ (champion/challenger) │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────────────────────┘ │ │
│ └───┘ │
│ │ │
│ ┌────────────────────────────┼────────────────────────────┐ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌─────────────────┐ ┌─────────────────────────┐ ┌─────────────────────┐ │
│ │ REAL-TIME │ │ BATCH INFERENCE │ │ STREAMING │ │
│ │ SERVING │ │ │ │ INFERENCE │ │
│ │ │ │ │ │ │ │
│ │ ┌───────────┐ │ │ ┌───────────────────┐ │ │ ┌───────────────┐ │ │
│ │ │ Serverless│ │ │ │ Spark UDF │ │ │ │ Structured │ │ │
│ │ │ Endpoints │ │ │ │ (mlflow.pyfunc) │ │ │ │ Streaming │ │ │
│ │ │ │ │ │ │ │ │ │ │ + UDF │ │ │
│ │ │ • Auto- │ │ │ │ • Distributed │ │ │ │ │ │ │
│ │ │ scale │ │ │ │ scoring │ │ │ │ • Near real- │ │ │
│ │ │ • GPU │ │ │ │ • High throughput│ │ │ │ time │ │ │
│ │ │ support │ │ │ │ • Cost efficient │ │ │ │ • Continuous │ │ │
│ │ │ • Low │ │ │ │ │ │ │ │ scoring │ │ │
│ │ │ latency │ │ │ └───────────────────┘ │ │ └───────────────┘ │ │
│ │ └───────────┘ │ │ │ │ │ │
│ │ │ │ ┌───────────────────┐ │ │ ┌───────────────┐ │ │
│ │ ┌───────────┐ │ │ │ Jobs/Workflows │ │ │ │ Delta Live │ │ │
│ │ │ External │ │ │ │ • Scheduled │ │ │ │ Tables │ │ │
│ │ │ Models │ │ │ │ • Triggered │ │ │ │ • Declarative │ │ │
│ │ │ (Custom) │ │ │ │ • Orchestrated │ │ │ │ • Managed │ │ │
│ │ └───────────┘ │ │ └───────────────────┘ │ │ └───────────────┘ │ │
│ └─────────────────┘ └─────────────────────────┘ └─────────────────────┘ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌───┐ │
│ │ INFERENCE TABLES & MONITORING │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌────────────┐ │ │
│ │ │ Request/ │ │ Model │ │ Data │ │ Alert │ │ │
│ │ │ Response │ │ Performance │ │ Drift │ │ System │ │ │
│ │ │ Logs │ │ Metrics │ │ Detection │ │ │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └────────────┘ │ │
│ └───┘ │
│ │
└───┘
3. Real-Time Model Serving
3.1 Creating Serverless Endpoints
Databricks Model Serving provides serverless, auto-scaling REST endpoints. The infrastructure automatically handles scaling, load balancing, and availability:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.serving import (
 EndpointCoreConfigInput,
 ServedModelInput,
 ServedModelInputWorkloadSize
)

w = WorkspaceClient()

Create a serving endpoint for a Unity Catalog model
endpoint = w.serving_endpoints.create_and_wait(
 name="customer-churn-predictor",
 config=EndpointCoreConfigInput(
 served_models=[
 ServedModelInput(
 model_name="ml_catalog.models.customer_churn",
 model_version="5",
 workload_size=ServedModelInputWorkloadSize.SMALL,
 scale_to_zero_enabled=True # Cost optimization
)
]
)
)

print(f"Endpoint state: {endpoint.state}")
print(f"Endpoint URL: https://{w.config.host}/serving-endpoints/{endpoint.name}/invocations")
3.2 Invoking Endpoints
Once deployed, endpoints can be invoked via REST API or the SDK:
import requests
import json

Method 1: Using requests library
url = "https://<workspace-url>/serving-endpoints/customer-churn-predictor/invocations"
headers = {
 "Authorization": f"Bearer {token}",
 "Content-Type": "application/json"
}

Single prediction
payload = {
 "dataframe_records": [
 {
 "customer_id": "C12345",
 "tenure": 24,
 "monthly_charges": 65.50,
 "total_charges": 1572.00
 }
]
}

response = requests.post(url, headers=headers, json=payload)
predictions = response.json()
print(f"Churn probability: {predictions['predictions'][0]}")

Batch predictions (multiple records)
batch_payload = {
 "dataframe_records": [
 {"customer_id": "C12345", "tenure": 24, "monthly_charges": 65.50, "total_charges": 1572.00},
 {"customer_id": "C12346", "tenure": 12, "monthly_charges": 85.00, "total_charges": 1020.00},
 {"customer_id": "C12347", "tenure": 48, "monthly_charges": 45.00, "total_charges": 2160.00}
]
}

response = requests.post(url, headers=headers, json=batch_payload)
batch_predictions = response.json()
Method 2: Using Databricks SDK
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

response = w.serving_endpoints.query(
 name="customer-churn-predictor",
 dataframe_records=[
 {
 "customer_id": "C12345",
 "tenure": 24,
 "monthly_charges": 65.50,
 "total_charges": 1572.00
 }
]
)

print(f"Predictions: {response.predictions}")
3.3 GPU-Accelerated Serving
For deep learning models requiring GPU inference:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.serving import (
 EndpointCoreConfigInput,
 ServedModelInput,
 ServedModelInputWorkloadType
)

w = WorkspaceClient()

Deploy model with GPU support
endpoint = w.serving_endpoints.create_and_wait(
 name="image-classifier-gpu",
 config=EndpointCoreConfigInput(
 served_models=[
 ServedModelInput(
 model_name="ml_catalog.models.image_classifier",
 model_version="3",
 workload_size="Small",
 workload_type=ServedModelInputWorkloadType.GPU_SMALL,
 scale_to_zero_enabled=True
)
]
)
)
3.4 Custom Model Serving
For models with custom preprocessing or postprocessing logic, create a custom MLflow pyfunc model:
import mlflow
from mlflow.pyfunc import PythonModel
import pandas as pd
import numpy as np

class CustomChurnPredictor(PythonModel):
 """
 Custom model wrapper that includes preprocessing
 and business logic for churn prediction.
 """

 def load_context(self, context):
 """Load model artifacts when endpoint starts."""
 import joblib

 # Load the trained model
 self.model = joblib.load(context.artifacts["model"])

 # Load preprocessing artifacts
 self.scaler = joblib.load(context.artifacts["scaler"])
 self.feature_names = joblib.load(context.artifacts["feature_names"])

 def preprocess(self, input_df: pd.DataFrame) -> pd.DataFrame:
 """Apply preprocessing to input data."""
 # Feature engineering
 input_df["tenure_months_squared"] = input_df["tenure"] ** 2
 input_df["charges_per_month"] = (
 input_df["total_charges"] / input_df["tenure"].clip(lower=1)
)

 # Select and order features
 features = input_df[self.feature_names]

 # Scale features
 scaled_features = self.scaler.transform(features)

 return pd.DataFrame(scaled_features, columns=self.feature_names)

 def predict(self, context, model_input: pd.DataFrame) -> pd.DataFrame:
 """Generate predictions with preprocessing and postprocessing."""

 # Preprocess input
 processed_input = self.preprocess(model_input)

 # Generate raw predictions
 probabilities = self.model.predict_proba(processed_input)[:, 1]

 # Postprocess: Apply business rules
 results = pd.DataFrame({
 "churn_probability": probabilities,
 "churn_risk_level": pd.cut(
 probabilities,
 bins=[0, 0.3, 0.6, 1.0],
 labels=["low", "medium", "high"]
),
 "recommended_action": np.where(
 probabilities > 0.6,
 "immediate_outreach",
 np.where(probabilities > 0.3, "monitor", "no_action")
)
 })

 return results

Log custom model
with mlflow.start_run():
 mlflow.pyfunc.log_model(
 artifact_path="custom_model",
 python_model=CustomChurnPredictor(),
 artifacts={
 "model": "model.joblib",
 "scaler": "scaler.joblib",
 "feature_names": "feature_names.joblib"
 },
 pip_requirements=["scikit-learn==1.3.0", "pandas>=1.5.0"],
 registered_model_name="ml_catalog.models.custom_churn_predictor"
)
4. A/B Testing and Canary Deployments
4.1 Traffic Splitting for A/B Tests
Test new model versions by routing a percentage of traffic to challenger models:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.serving import (
 EndpointCoreConfigInput,
 ServedModelInput,
 TrafficConfig,
 Route
)

w = WorkspaceClient()

Deploy with traffic split: 90% champion, 10% challenger
w.serving_endpoints.update_config_and_wait(
 name="customer-churn-predictor",
 served_models=[
 ServedModelInput(
 model_name="ml_catalog.models.customer_churn",
 model_version="5", # Current champion
 workload_size="Small",
 scale_to_zero_enabled=True
),
 ServedModelInput(
 model_name="ml_catalog.models.customer_churn",
 model_version="6", # New challenger
 workload_size="Small",
 scale_to_zero_enabled=True
)
],
 traffic_config=TrafficConfig(
 routes=[
 Route(
 served_model_name="customer_churn-5",
 traffic_percentage=90
),
 Route(
 served_model_name="customer_churn-6",
 traffic_percentage=10
)
]
)
)
4.2 Gradual Rollout (Canary Deployment)
Implement gradual rollout by progressively increasing challenger traffic:
from databricks.sdk import WorkspaceClient
import time

w = WorkspaceClient()

def gradual_rollout(
 endpoint_name: str,
 champion_model: str,
 challenger_model: str,
 steps: list = [10, 25, 50, 75, 100],
 wait_minutes: int = 30,
 rollback_threshold: float = 0.05
):
 """
 Gradually shift traffic from champion to challenger model.

 The rollout proceeds through defined traffic percentage steps,
 monitoring error rates at each step. If errors exceed the threshold,
 the rollout is automatically rolled back.

 Args:
 endpoint_name: Name of the serving endpoint
 champion_model: Current production model identifier
 challenger_model: New model to roll out
 steps: List of traffic percentages for challenger
 wait_minutes: Time to wait between steps for monitoring
 rollback_threshold: Error rate threshold for automatic rollback
 """

 for challenger_pct in steps:
 champion_pct = 100 - challenger_pct
 print(f"Setting traffic: Champion={champion_pct}%, Challenger={challenger_pct}%")

 # Update traffic split
 w.serving_endpoints.update_config_and_wait(
 name=endpoint_name,
 traffic_config=TrafficConfig(
 routes=[
 Route(served_model_name=champion_model, traffic_percentage=champion_pct),
 Route(served_model_name=challenger_model, traffic_percentage=challenger_pct)
]
)
)

 # Wait for metrics to accumulate
 print(f"Waiting {wait_minutes} minutes for metrics...")
 time.sleep(wait_minutes * 60)

 # Check error rates
 error_rate = get_model_error_rate(endpoint_name, challenger_model)

 if error_rate > rollback_threshold:
 print(f"Error rate {error_rate:.2%} exceeds threshold. Rolling back!")
 rollback_deployment(endpoint_name, champion_model)
 return False

 print(f"Challenger error rate: {error_rate:.2%} - Proceeding...")

 print("Rollout complete! Challenger is now 100%")
 return True

def get_model_error_rate(endpoint_name: str, model_name: str) -> float:
 """Query inference tables for model error rate."""
 error_metrics = spark.sql(f"""
 SELECT
 COUNT(CASE WHEN status_code != 200 THEN 1 END) / COUNT(*) as error_rate
 FROM ml_catalog.monitoring.{endpoint_name}_inference_logs
 WHERE served_model_name = '{model_name}'
 AND request_time >= current_timestamp() - INTERVAL 30 MINUTES
 """).collect()[0]
 return error_metrics.error_rate

def rollback_deployment(endpoint_name: str, champion_model: str):
 """Roll back to champion model with 100% traffic."""
 w.serving_endpoints.update_config_and_wait(
 name=endpoint_name,
 traffic_config=TrafficConfig(
 routes=[Route(served_model_name=champion_model, traffic_percentage=100)]
)
)
4.3 Analyzing A/B Test Results
-- Compare champion vs challenger performance
WITH model_metrics AS (
 SELECT
 served_model_name,
 DATE(request_time) as request_date,
 COUNT(*) as request_count,
 AVG(execution_time_ms) as avg_latency_ms,
 PERCENTILE(execution_time_ms, 0.95) as p95_latency_ms,
 PERCENTILE(execution_time_ms, 0.99) as p99_latency_ms,
 SUM(CASE WHEN status_code != 200 THEN 1 ELSE 0 END) as error_count,
 SUM(CASE WHEN status_code != 200 THEN 1 ELSE 0 END) / COUNT(*) as error_rate
 FROM ml_catalog.monitoring.customer_churn_predictor_inference_logs
 WHERE request_time >= current_date() - INTERVAL 7 DAYS
 GROUP BY served_model_name, DATE(request_time)
)
SELECT
 served_model_name,
 SUM(request_count) as total_requests,
 AVG(avg_latency_ms) as overall_avg_latency,
 AVG(p95_latency_ms) as overall_p95_latency,
 SUM(error_count) / SUM(request_count) as overall_error_rate
FROM model_metrics
GROUP BY served_model_name;
5. Batch Inference
5.1 Spark UDF for Distributed Scoring
For high-volume batch predictions, use MLflow's Spark UDF for distributed inference:
import mlflow
from pyspark.sql import functions as F
from pyspark.sql.types import DoubleType, StructType, StructField, StringType

Load model as Spark UDF
This broadcasts the model to all executors for parallel scoring
model_uri = "models:/ml_catalog.models.customer_churn@champion"
predict_udf = mlflow.pyfunc.spark_udf(
 spark,
 model_uri,
 result_type=DoubleType() # Single probability value
)

Load customers to score
customers_df = spark.table("gold.customer_features") \
 .filter("is_active = true")

Define feature columns for prediction
feature_columns = [
 "tenure", "monthly_charges", "total_charges",
 "contract_type", "payment_method", "num_support_tickets"
]

Apply model at scale
Spark automatically parallelizes scoring across the cluster
predictions_df = customers_df.withColumn(
 "churn_probability",
 predict_udf(F.struct(*[F.col(c) for c in feature_columns]))
)

Add metadata for tracking
predictions_df = predictions_df.withColumns({
 "prediction_timestamp": F.current_timestamp(),
 "model_version": F.lit("champion"),
 "model_uri": F.lit(model_uri)
})

Classify risk levels
predictions_df = predictions_df.withColumn(
 "churn_risk",
 F.when(F.col("churn_probability") >= 0.7, "high")
 .when(F.col("churn_probability") >= 0.4, "medium")
 .otherwise("low")
)

Write predictions to Delta table
predictions_df.write \
 .format("delta") \
 .mode("overwrite") \
 .option("overwriteSchema", "true") \
 .saveAsTable("gold.customer_churn_predictions")

print(f"Scored {predictions_df.count()} customers")
5.2 Optimizing Batch Inference Performance
from pyspark.sql import functions as F

Performance optimization techniques for batch inference

1. Repartition for parallel processing
More partitions = more parallelism (but too many creates overhead)
optimal_partitions = max(200, customers_df.count() // 10000)
customers_df = customers_df.repartition(optimal_partitions)

2. Use Pandas UDF for better performance with sklearn models
from pyspark.sql.functions import pandas_udf
import pandas as pd

Cache model loading per executor
@pandas_udf("double")
def optimized_predict(batch_iter):
 """
 Pandas UDF that loads model once per executor.
 Much faster than row-by-row prediction.
 """
 # Model loaded once, cached for all batches
 model = mlflow.pyfunc.load_model(model_uri)

 for batch_df in batch_iter:
 predictions = model.predict(batch_df)
 yield pd.Series(predictions)

Apply optimized prediction
predictions_df = customers_df.withColumn(
 "churn_probability",
 optimized_predict(F.struct(*feature_columns))
)

3. Broadcast small lookup tables
segment_thresholds = spark.table("config.segment_thresholds")
broadcast_thresholds = F.broadcast(segment_thresholds)

predictions_df = predictions_df.join(
 broadcast_thresholds,
 on="customer_segment",
 how="left"
)

4. Cache intermediate results if reused
predictions_df.cache()
predictions_df.count() # Trigger caching
5.3 Scheduled Batch Inference Jobs
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.jobs import (
 Task,
 NotebookTask,
 JobCluster,
 ClusterSpec,
 CronSchedule
)

w = WorkspaceClient()

Create scheduled scoring job
scoring_job = w.jobs.create(
 name="daily-churn-predictions",
 tasks=[
 Task(
 task_key="score_customers",
 notebook_task=NotebookTask(
 notebook_path="/Repos/ml-pipelines/batch_scoring",
 base_parameters={
 "model_alias": "champion",
 "output_table": "gold.customer_churn_predictions"
 }
),
 job_cluster_key="scoring-cluster"
)
],
 job_clusters=[
 JobCluster(
 job_cluster_key="scoring-cluster",
 new_cluster=ClusterSpec(
 spark_version="14.3.x-scala2.12",
 node_type_id="m5.2xlarge",
 autoscale={"min_workers": 2, "max_workers": 10},
 spark_conf={
 "spark.sql.shuffle.partitions": "200",
 "spark.databricks.delta.optimizeWrite.enabled": "true"
 }
)
)
],
 schedule=CronSchedule(
 quartz_cron_expression="0 0 6 * * ?", # Daily at 6 AM
 timezone_id="America/New_York"
),
 email_notifications={
 "on_failure": ["ml-team@company.com"]
 }
)

print(f"Created job: {scoring_job.job_id}")
6. Streaming Inference
6.1 Real-Time Scoring Pipeline
Integrate ML predictions into streaming pipelines for near real-time scoring:
import mlflow
from pyspark.sql import functions as F
from pyspark.sql.types import StructType, StructField, StringType, DoubleType

Load model as UDF
model_uri = "models:/ml_catalog.models.fraud_detector@champion"
fraud_score_udf = mlflow.pyfunc.spark_udf(spark, model_uri, result_type=DoubleType())

Define schema for streaming source
transaction_schema = StructType([
 StructField("transaction_id", StringType(), False),
 StructField("customer_id", StringType(), False),
 StructField("amount", DoubleType(), False),
 StructField("merchant_category", StringType(), True),
 StructField("transaction_timestamp", StringType(), False)
])

Read from streaming source (Kafka, Delta, etc.)
transactions_stream = spark.readStream \
 .format("delta") \
 .option("ignoreChanges", "true") \
 .table("bronze.transactions")

Feature columns for fraud detection
feature_cols = ["amount", "merchant_category", "hour_of_day", "day_of_week"]

Add time-based features
enriched_stream = transactions_stream.withColumns({
 "hour_of_day": F.hour(F.col("transaction_timestamp")),
 "day_of_week": F.dayofweek(F.col("transaction_timestamp"))
})

Apply ML model for fraud scoring
scored_stream = enriched_stream.withColumn(
 "fraud_score",
 fraud_score_udf(F.struct(*feature_cols))
).withColumns({
 "is_fraud": F.when(F.col("fraud_score") > 0.7, True).otherwise(False),
 "fraud_risk_level": F.when(F.col("fraud_score") > 0.7, "high")
 .when(F.col("fraud_score") > 0.4, "medium")
 .otherwise("low"),
 "scoring_timestamp": F.current_timestamp()
})

Write to predictions table
query = scored_stream.writeStream \
 .format("delta") \
 .outputMode("append") \
 .option("checkpointLocation", "/checkpoints/fraud_scoring") \
 .trigger(processingTime="10 seconds") \
 .toTable("gold.fraud_predictions")

Separate stream for high-risk alerts
alerts_stream = scored_stream.filter(F.col("is_fraud") == True)

alerts_query = alerts_stream.writeStream \
 .format("delta") \
 .outputMode("append") \
 .option("checkpointLocation", "/checkpoints/fraud_alerts") \
 .trigger(processingTime="5 seconds") \
 .toTable("gold.fraud_alerts")
6.2 Streaming with Feature Lookup
Combine streaming data with Feature Store lookups:
from databricks.feature_engineering import FeatureEngineeringClient, FeatureLookup
from pyspark.sql import functions as F

fe = FeatureEngineeringClient()

Define feature lookups for enrichment
feature_lookups = [
 FeatureLookup(
 table_name="ml_catalog.features.customer_risk_profile",
 feature_names=["risk_score", "account_age_days", "previous_fraud_count"],
 lookup_key="customer_id"
)
]

Read streaming transactions
transactions_stream = spark.readStream \
 .format("delta") \
 .table("bronze.transactions")

Enrich with feature lookups
Note: For streaming, features are looked up at processing time
enriched_stream = transactions_stream.transform(
 lambda df: fe.score_batch(
 model_uri="models:/ml_catalog.models.fraud_detector@champion",
 df=df,
 result_type="double"
)
)
7. External Model Serving
7.1 Serving External APIs (OpenAI, etc.)
Databricks Model Serving supports external model endpoints:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.serving import (
 EndpointCoreConfigInput,
 ServedEntityInput,
 ExternalModel,
 OpenAiConfig
)

w = WorkspaceClient()

Create endpoint serving external OpenAI model
endpoint = w.serving_endpoints.create_and_wait(
 name="text-embedding-endpoint",
 config=EndpointCoreConfigInput(
 served_entities=[
 ServedEntityInput(
 name="openai-embeddings",
 external_model=ExternalModel(
 name="text-embedding-ada-002",
 provider="openai",
 openai_config=OpenAiConfig(
 openai_api_key="{{secrets/ml-secrets/openai-api-key}}"
),
 task="llm/v1/embeddings"
)
)
]
)
)
7.2 Custom Container Serving
For complex dependencies or custom runtimes:
import mlflow
from mlflow.pyfunc import PythonModel

class CustomContainerModel(PythonModel):
 """Model that requires custom dependencies."""

 def load_context(self, context):
 # Load model with custom libraries
 import onnxruntime as ort
 self.session = ort.InferenceSession(
 context.artifacts["model.onnx"]
)

 def predict(self, context, model_input):
 import numpy as np
 input_array = model_input.values.astype(np.float32)
 outputs = self.session.run(None, {"input": input_array})
 return outputs[0]

Log with custom environment
conda_env = {
 "channels": ["conda-forge"],
 "dependencies": [
 "python=3.10",
 "pip",
 {"pip": ["onnxruntime==1.16.0", "numpy>=1.24.0"]}
]
}

with mlflow.start_run():
 mlflow.pyfunc.log_model(
 artifact_path="onnx_model",
 python_model=CustomContainerModel(),
 artifacts={"model.onnx": "path/to/model.onnx"},
 conda_env=conda_env,
 registered_model_name="ml_catalog.models.onnx_classifier"
)
8. Monitoring and Observability
8.1 Enabling Inference Tables
Inference tables automatically capture all requests and responses:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.serving import EndpointCoreConfigInput, ServedModelInput

w = WorkspaceClient()

Create endpoint with inference logging
endpoint = w.serving_endpoints.create_and_wait(
 name="monitored-endpoint",
 config=EndpointCoreConfigInput(
 served_models=[
 ServedModelInput(
 model_name="ml_catalog.models.customer_churn",
 model_version="5",
 workload_size="Small"
)
],
 auto_capture_config={
 "catalog_name": "ml_catalog",
 "schema_name": "monitoring",
 "table_name_prefix": "churn_predictor",
 "enabled": True
 }
)
)
8.2 Monitoring Queries
-- Request volume and latency trends
SELECT
 DATE_TRUNC('hour', request_time) as hour,
 COUNT(*) as request_count,
 AVG(execution_time_ms) as avg_latency,
 PERCENTILE(execution_time_ms, 0.50) as p50_latency,
 PERCENTILE(execution_time_ms, 0.95) as p95_latency,
 PERCENTILE(execution_time_ms, 0.99) as p99_latency
FROM ml_catalog.monitoring.churn_predictor_request_logs
WHERE request_time >= current_date() - INTERVAL 7 DAYS
GROUP BY DATE_TRUNC('hour', request_time)
ORDER BY hour;

-- Error analysis
SELECT
 status_code,
 COUNT(*) as error_count,
 COLLECT_LIST(DISTINCT error_message) as error_types
FROM ml_catalog.monitoring.churn_predictor_request_logs
WHERE status_code != 200
AND request_time >= current_date() - INTERVAL 1 DAY
GROUP BY status_code;

-- Prediction distribution monitoring
SELECT
 DATE(request_time) as prediction_date,
 AVG(CAST(response:predictions[0] AS DOUBLE)) as avg_prediction,
 STDDEV(CAST(response:predictions[0] AS DOUBLE)) as stddev_prediction,
 PERCENTILE(CAST(response:predictions[0] AS DOUBLE), 0.25) as p25,
 PERCENTILE(CAST(response:predictions[0] AS DOUBLE), 0.75) as p75
FROM ml_catalog.monitoring.churn_predictor_request_logs
WHERE status_code = 200
GROUP BY DATE(request_time);
9. Best Practices
9.1 Endpoint Management
Health check and status monitoring
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

def check_endpoint_health(endpoint_name: str) -> dict:
 """Check endpoint health and return status details."""
 endpoint = w.serving_endpoints.get(name=endpoint_name)

 return {
 "name": endpoint.name,
 "state": endpoint.state.ready,
 "config_update": endpoint.state.config_update,
 "served_models": [
 {
 "name": sm.model_name,
 "version": sm.model_version,
 "state": sm.state.deployment_state
 }
 for sm in endpoint.config.served_models
]
 }

List all endpoints
for endpoint in w.serving_endpoints.list():
 health = check_endpoint_health(endpoint.name)
 print(f"{health['name']}: Ready={health['state']}")
9.2 Cost Optimization
Enable scale-to-zero for non-production endpoints
w.serving_endpoints.update_config_and_wait(
 name="dev-endpoint",
 served_models=[
 ServedModelInput(
 model_name="ml_catalog.models.test_model",
 model_version="1",
 workload_size="Small",
 scale_to_zero_enabled=True # No cost when idle
)
]
)

Use appropriate workload sizes
Small: Low traffic, cost-sensitive
Medium: Moderate traffic
Large: High traffic, latency-sensitive
Document Control
	Version
	Date
	Author
	Changes

	1.0
	2025-01-29
	ML Platform Team
	Initial document

This document is maintained by the ML Platform Team. For questions or updates, contact the team via the #ml-platform Slack channel.
image1.png
#MAST=CH
DIGITAL

